By Date


  • 5-July-2018

    English

    Chemical Safety and Biotechnology News

    This Chemical Safety and Biosafety news release provides an update on the recent projects, events and publications.

    Related Documents
  • 28-June-2018

    English

    Genome Editing: Applications in Agriculture

    The OECD Conference on Genome Editing: Applications in Agriculture – Implications for Health, Environment and Regulation will explore the regulatory considerations raised by genome edited products, with the aim to favour a coherent policy approach to facilitate innovation involving genome editing. More information on the programme and the speakers.

    Related Documents
  • 28-June-2018

    English

    OECD Guidelines for the Testing of Chemicals

    The OECD adopted a set of new and updated Test Guidelines for chemicals safety testing to keep pace with scientific progress. These Test Guidelines are readily usable tools for members and Mutual Acceptance Data (MAD) adhering countries.

    Related Documents
  • 27-June-2018

    English

    Test No. 412: Subacute Inhalation Toxicity: 28-Day Study

    This revised Test Guideline 412 (TG 412) has been designed to fully characterize test article toxicity by the inhalation route following repeated exposure for a limited period of time (28 days), and to provide data for quantitative inhalation risk assessments.  It was updated in 2017 to enable the testing and characterisation of effects of nanomaterials tested.Groups of at least 5 male and 5 female rodents are exposed 6 hours per day for 28 days to a) the test chemical at three or more concentration levels, b) filtered air (negative control), and/or c) the vehicle (vehicle control). Animals are generally exposed 5 days per week but exposure for 7 days per week is also allowed. Males and females are always tested, but they may be exposed at different concentration levels if it is known that one sex is more susceptible to a given test article. This guideline allows the study director the flexibility to include satellite (reversibility) groups, bronchoalveolar lavage (BAL), lung burden (LB) for particles, neurologic tests, and additional clinical pathology and histopathological evaluations in order to better characterize the toxicity of a test chemical.
  • 27-June-2018

    English

    Test No. 413: Subchronic Inhalation Toxicity: 90-day Study

    This revised Test Guideline 413 (TG 413) has been designed to fully characterize test article toxicity by the inhalation route following repeated exposure for a period of 90 days, and to provide data for quantitative inhalation risk assessments.  It was updated in 2017 to enable the testing and characterisation of effects of nanomaterials tested.Groups of at least 10 male and 10 female rodents are exposed 6 hours per day for 90 days to a) the test chemical at three or more concentration levels, b) filtered air (negative control), and/or c) the vehicle (vehicle control). Animals are generally exposed 5 days per week but exposure for 7 days per week is also allowed. Males and females are always tested, but they may be exposed at different concentration levels if it is known that one sex is more susceptible to a given test chemical. The results of the study include measurement and daily and detailed observations (haematology and clinical chemistry), as well as ophthalmology, gross pathology, organ weights, and histopathology. This Test Guideline allows the flexibility to include satellite (reversibility) groups, interim sacrifices, bronchoalveolar lavage (BAL), lung burden (LB) for particles, neurologic tests, and additional clinical pathology and histopathological evaluations in order to better characterize the toxicity of a test chemical.
  • 27-June-2018

    English

    Test No. 442D: In Vitro Skin Sensitisation - ARE-Nrf2 Luciferase Test Method

    The present Test Guideline addresses the human health hazard endpoint skin sensitisation, following exposure to a test chemical. Skin sensitisation refers to an allergic response following skin contact with the tested chemical, as defined by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS). This Test Guideline (TG) provides an in vitro procedure (the ARE-Nrf2 luciferase test method) used for supporting the discrimination between skin sensitisers and non-sensitisers in accordance with the UN GHS. The second key event on the adverse outcome pathway leading to skin sensitisation takes place in the keratinocytes and includes inflammatory responses as well as gene expression associated with specific cell signalling pathways such as the antioxidant/electrophile response element (ARE)-dependent pathways. The test method described in this Test Guideline (ARE-Nrf2 luciferase test method) is proposed to address this second key event. The cell line contains the luciferase gene under the transcriptional control of a constitutive promoter fused with an ARE element from a gene that is known to be up-regulated by contact sensitisers. The luciferase signal reflects the activation by sensitisers of endogenous Nrf2 dependent genes. This allows quantitative measurement (by luminescence detection) of luciferase gene induction, using well established light producing luciferase substrates, as an indicator of the activity of the Nrf2 transcription factor in cells following exposure to electrophilic test substances. There are currently two in vitro ARE-Nrf2 luciferase test method covered by this Test Guideline: the KeratinoSensTM test method and the LuSens test method. Performance standards have been developed to enable the validation of similar test methods.
  • 27-June-2018

    English

    Test No. 442B: Skin Sensitization - Local Lymph Node Assay: BrdU-ELISA

    The Local Lymph Node Assay: BrdU-ELISA (LLNA:BrdU-ELISA) is a non-radioactive modification to the LLNA method for identifying potential skin sensitizing test substances and measuring the proliferation of lymphocytes they induce in the auricular lymph nodes. The method described in mouse  is based on the use of measuring 5-bromo-2-deoxyuridine (BrdU) content, an analogue of thymidine, as an indicator of this proliferation. A minimum of four animals is used per dose group, with a minimum of three concentrations of the test substance, plus a concurrent negative control group and a positive control group. The experimental schedule is during 6 days. Thereafter, the animals are killed and a single cell suspension of lymph node cells (LNC) is prepared. The procedure for preparing the LNC is crucial, in particular for the small lymph nodes in NC animals. Then the BrdU content in DNA of lymphocytes is measured by ELISA using a commercial kit of by Flow Cytometry (FCM). This study includes: measurements (weighing, BrdU) and clinical daily observations. The results are expressed as the Stimulation Index (SI) obtained by calculation from the mean BrdU labelling index. The SI should be ≥1.6 for the ELISA method or ≥2.7 for the FCM method for identifying the test material as a potential skin sensitizer. 
  • 27-June-2018

    English

    Test No. 442E: In Vitro Skin Sensitisation - In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation

    The present Key Event based Test Guideline (TG) addresses the human health hazard endpoint skin sensitisation, following exposure to a test chemical. More specifically, it addresses the activation of dendritic cells, which is one Key Event on the Adverse Outcome Pathway (AOP) for Skin Sensitisation. Skin sensitisation refers to an allergic response following skin contact with the tested chemical, as defined by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS). This TG provides three in vitro test methods addressing the same Key Event on the AOP: (i) the human cell Line Activation Test or h-CLAT method, (ii) the U937 Cell Line Activation Test or U-SENS and (iii) the Interleukin-8 Reporter Gene Assay or IL-8 Luc assay. All of them are used for supporting the discrimination between skin sensitisers and non-sensitisers in accordance with the UN GHS. Test methods described in this TG either quantify the change in the expression of cell surface marker(s) associated with the process of activation of monocytes and DC following exposure to sensitisers (e.g. CD54, CD86) or the changes in IL-8 expression, a cytokine associated with the activation of DC. In the h-CLAT and U-SENS assays, the changes of surface marker expression are measured by flow cytometry following cell staining with fluorochrome-tagged antibodies. In the IL-8 Luc assay, the changes in IL-8 expression are measured indirectly via the activity of a luciferase gene under the control of the IL-8 promoter. The relative fluorescence or luminescence intensity of the treated cells compared to solvent/vehicle control are calculated and used in the prediction model, to support the discrimination between sensitisers and non-sensitisers.
  • 27-June-2018

    English

    Test No. 433: Acute Inhalation Toxicity: Fixed Concentration Procedure

    This method provides information on health hazard likely to arise from short-term exposure to a test chemical by inhalation.It is a principle of the method that only moderately toxic concentrations are used so that ‘evident toxicity’, rather than death/moribundity is used as an endpoint, and concentrations that are expected to be lethal are avoided.Groups of animals of a single sex are exposed for a short period of time to the test chemical in a stepwise procedure using the appropriate fixed concentrations for vapours, dusts/mists (aerosols) or gases.  Further groups of animals may be tested at higher concentrations in the absence of signs of evident toxicity or mortality at lower concentrations. This procedure continues until the concentration causing evident toxicity or no more than one death/ moribund animal is identified, or when no effects are seen at the highest concentration or when deaths/ moribundity occur at the lowest concentration.  A total of five animals of one sex will normally be used for each concentration level investigated. The results of this study include: measurements (weighing at least weekly) and daily detailed observations, as well as gross necropsy. The method provides information on the hazardous properties and allows the substance to be classified for acute toxicity according to the Globally Harmonised System of classification and labelling of chemicals. 
  • 27-June-2018

    English

    Test No. 492: Reconstructed human Cornea-like Epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage

    This Test Guideline describes an in vitro procedure allowing the identification of chemicals (substances and mixtures) not requiring classification and labelling for eye irritation or serious eye damage in accordance with UN GHS. It makes use of reconstructed human cornea-like epithelium (RhCE) which closely mimics the histological, morphological, biochemical and physiological properties of the human corneal epithelium. The test evaluates the ability of a test chemical to induce cytotoxicity in a RhCE tissue construct, as measured by the MTT assay. Coloured chemicals can also be tested by used of an HPLC procedure. RhCE tissue viability following exposure to a test chemical is measured by enzymatic conversion of the vital dye MTT by the viable cells of the tissue into a blue MTT formazan salt that is quantitatively measured after extraction from tissues. The viability of the RhCE tissue is determined in comparison to tissues treated with the negative control substance (% viability), and is then used to predict the eye hazard potential of the test chemical. Chemicals not requiring classification and labelling according to UN GHS are identified as those that do not decrease tissue viability below a defined threshold (i.e., tissue viability > 60%, for UN GHS No Category).
  • << < 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 > >>