ACCESSIBILITY TO PUBLIC TRANSPORT: THE OECD APPROACH

Tadashi MATSUMOTO

WORKSHOP on ACCESSIBILITY TO QUALITY SERVICES IN REGIONS AND CITIES: MEASURES AND POLICIES

18 June 2013, Paris, France
Overview

- Objective: To develop internationally comparable public transport indicators
- Definition of ‘accessibility to public transport’: “the percentage of population living within a public transport service area in a metropolitan area”.
- OECD’s approach
 - Simplicity
 - Comparability
 - Relevance to policy analysis
- Case Study of Daejeon, Korea
Case study: Daejeon, Korea

• Approach 1:
 – 400 and 800 meters from a metro, train and bus station
 – No road network consideration
 – No frequency consideration

• Result
 – 68% of city’s population are living in the area accessible by public transport

Note: This analysis is based on administrative border of Daejeon, Daejeon is chosen considering data availability and relevance to the ongoing project: Compact City Study; Korea
Source: OECD’s elaboration based on Korea Transport Database (2011)
Case study: Daejeon, Korea

- **Approach 2**
 - Distance (5 or 10 minute walk from stations) is now based on road network
 - Average frequency (>=5 or < 5 times per hour) is combined with distance

- **Result**
 - 51% of city’s population are living in the area accessible by public transport (3 % of very high, 7% high, 34% medium, 6% low accessibility)

Note: This analysis is based on administrative border of Daejeon, Daejeon is chosen considering data availability and relevance to the ongoing project: Compact City Study; Korea

Source: OECD’s elaboration based on Korea Transport Database(2011)
Studies by European Commission

Access to a public transport by frequency of stops:

- Null
- Low
- Medium
- High
- Very high

<table>
<thead>
<tr>
<th>City</th>
<th>Share of population, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dublin</td>
<td></td>
</tr>
<tr>
<td>Rotterdam</td>
<td></td>
</tr>
<tr>
<td>Budapest</td>
<td></td>
</tr>
<tr>
<td>Tallinn</td>
<td></td>
</tr>
<tr>
<td>Antwerpen</td>
<td></td>
</tr>
<tr>
<td>Amsterdam</td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
</tr>
<tr>
<td>Stockholm</td>
<td></td>
</tr>
<tr>
<td>Athens</td>
<td></td>
</tr>
<tr>
<td>Torino</td>
<td></td>
</tr>
<tr>
<td>Helsinki</td>
<td></td>
</tr>
</tbody>
</table>
Summary results and future work

Approach 1:
- Relatively simple, easier to expand to more OECD metropolitan areas

Approach 2:
- Provides detailed analysis (by frequency and pedestrian network)
- Lack of data for all OECD metropolitan areas
 - Frequency data: GTFS (Google Maps) provides only some of North American and European cities.
 - Pedestrian network: Detailed road network of each city is needed

Future work
- More case studies to identify the optimized approach
- Continued collaboration with European Commission