Corrigendum

Please note that despite our best efforts to ensure quality control, errors have slipped into the World Energy Outlook 2015

The text in pages 8, 10, 27, 47, 48 has changed. It should be replaced by the following pages.
Roger Emslie Wood Mackenzie
John Foran Natural Resources Canada
Michelle Foss University of Texas
Herman Franssen Energy Intelligence Group
Peter Fraser Ontario Energy Board, Canada
Sha Fu Renmin University of China
Andrew Garnett University of Queensland, Australia
Carlos Gascó Iberdrola
Sudeshna Ghosh Banerjee The World Bank
Dolf Gielen International Renewable Energy Agency (IRENA)
Andrii Gritsevskyi International Atomic Energy Agency
Wenke Han Energy Research Institute of National Development and Reform Commission (NDRC), China
James Henderson Oxford Institute of Energy Studies, United Kingdom
Masazumi Hirono Asia Pacific Energy Research Center
Didier Houssin IFP Energies Nouvelles, France
Tom Howes European Commission
Julie Ipe Global Alliance for Clean Cookstoves
Takashi Irie J-Power
Andrew Jeffries Asian Development Bank
James T. Jensen Jensen Associates
Jan-Hein Jesse Clingendael Institute
Balazs Jozsa European Commission
Marianne Kah ConocoPhillips
Michio Kawamata Mitsubishi Corporation
Ajay Khandelwal Reliance Industries
Radhika Khosla Centre for Policy Research (CPR), India
Shinichi Kihara Ministry of Economy, Trade and Industry (METI), Japan
Cherl-Hyun Kim Korea Energy Economics Institute (KEEI)
David Knapp Energy Intelligence Group
Hans Jørgen Koch Nordic Energy Research, Nordic Council of Ministers
Ken Koyama Institute of Energy Economics, Japan
Vello Kuuskraa Advanced Resources International
Benoit Lebot International Partnership for Energy Efficiency Cooperation
Steve Lennon Shanduvan
Gang Liu University of Southern Denmark
Wenge Liu China Coal Information Institute
Xiaoli Liu Energy Research Institute of National Development and Reform Commission (NDRC), China
Joan MacNaughton World Energy Council
The individuals and organisations that contributed to this study are not responsible for any opinions or judgments it contains. All errors and omissions are solely the responsibility of the IEA.
smaller, more remote or more challenging reservoirs, although the effect is dampened by technology and efficiency improvements. By contrast, cost reductions are the norm for more efficient equipment and appliances, as well as for wind power and solar PV, where technology gains are proceeding apace and there are plentiful suitable sites for their deployment. Fossil-fuel consumption continues to benefit from large subsidies: we estimate this global subsidy bill at around $490 billion in 2014, although it would have been around $610 billion without reforms enacted since 2009. Subsidies to aid the deployment of renewable energy technologies in the power sector were $112 billion in 2014 (plus $23 billion for biofuels). Supportive government policies and related subsidies continue to be critical to most of the capacity deployed, as only a few countries put a significant price on carbon in our central scenario. The need for subsidies however, is restrained by a shift in deployment to countries with higher quality renewable resources, by continued cost reductions and higher wholesale prices. A 50% rise in subsidies, to an estimated $170 billion in 2040, secures a five-fold increase in generation from non-hydro renewables (without the cost reductions and higher wholesale prices, the subsidy bill in 2040 would exceed $400 billion). The share of non-hydro-renewables that is competitive without any subsidy support doubles to one-third.

The direction of travel is changing, but the destination is still not 2 degrees

Despite the shift in policy intentions catalysed by COP21, more is needed to avoid the worst effects of climate change. There are unmistakable signs that the much-needed global energy transition is underway, but not yet at a pace that leads to a lasting reversal of the trend of rising CO₂ emissions. Annual investment in low-carbon technologies in our central scenario increases, but the cumulative $7.4 trillion invested in renewable energy to 2040 represents only around 15% of total investment in global energy supply. The steady decarbonisation of electricity supply is not matched by a similarly rapid shift in end-use sectors, where it is much more difficult and expensive to displace coal and gas as fuels for industry, or oil as a transport fuel. The net result is that energy policies, as formulated today, lead to a slower increase in energy-related CO₂ emissions, but not the full de-coupling from economic growth and the absolute decline in emissions necessary to meet the 2 °C target. A WEO special report released in June 2015, Energy and Climate Change, showed what more can be done, at no net economic cost, to bring about a peak in energy-related emissions by 2020 – an essential step if the door to a 2 °C outcome is to remain open:

- Increasing energy efficiency in the industry, buildings and transport sectors.
- Progressively reducing the use of the least-efficient coal-fired power plants and banning their construction.
- Increasing investment in renewable energy technologies in the power sector from $270 billion in 2014 to $400 billion in 2030.
- Phasing out of remaining fossil-fuel subsidies to end-users by 2030.
- Reducing methane emissions in oil and gas production.
Table 1.6 Fossil-fuel import prices by scenario

<table>
<thead>
<tr>
<th></th>
<th>New Policies Scenario</th>
<th>Current Policies Scenario</th>
<th>450 Scenario</th>
<th>Low Oil Price Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real terms (2014 prices)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEA crude oil imports ($/barrel)</td>
<td>97</td>
<td>80</td>
<td>113</td>
<td>128</td>
</tr>
<tr>
<td>Natural gas ($/MBtu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>4.4</td>
<td>4.7</td>
<td>6.2</td>
<td>7.5</td>
</tr>
<tr>
<td>Europe imports</td>
<td>9.3</td>
<td>7.8</td>
<td>11.2</td>
<td>12.4</td>
</tr>
<tr>
<td>Japan imports</td>
<td>16.2</td>
<td>11.0</td>
<td>13.0</td>
<td>14.1</td>
</tr>
<tr>
<td>OECD steam coal imports ($/tonne)</td>
<td>78</td>
<td>94</td>
<td>102</td>
<td>108</td>
</tr>
<tr>
<td>Nominal terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEA crude oil imports ($/barrel)</td>
<td>97</td>
<td>89</td>
<td>153</td>
<td>210</td>
</tr>
<tr>
<td>Natural gas ($/MBtu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>4.4</td>
<td>5.2</td>
<td>8.3</td>
<td>12.3</td>
</tr>
<tr>
<td>Europe imports</td>
<td>9.3</td>
<td>8.6</td>
<td>15.1</td>
<td>20.3</td>
</tr>
<tr>
<td>Japan imports</td>
<td>16.2</td>
<td>12.2</td>
<td>17.6</td>
<td>23.1</td>
</tr>
<tr>
<td>OECD steam coal imports ($/tonne)</td>
<td>78</td>
<td>104</td>
<td>138</td>
<td>178</td>
</tr>
</tbody>
</table>

Notes: MBtu = million British thermal units. Gas prices are weighted averages expressed on a gross calorific-value basis. All prices are for bulk supplies exclusive of tax. The US price reflects the wholesale price prevailing on the domestic market. Nominal prices assume inflation of 1.9% per year from 2014.
The rebound in prices occurs most rapidly in the Current Policies Scenario, because of higher oil consumption, with the average IEA crude oil import price – used as a proxy for international oil prices – approaching $83/barrel (in year-2014 dollars) in 2020 in this scenario. In the New Policies Scenario, the market tightens less quickly and the oil price reaches $80/barrel in 2020.

Figure 1.4 Non-OPEC supply cost curves for 2015 and 2040 in the New Policies Scenario

The oil price trajectories are determined by the level needed to stimulate sufficient investment in supply in order to meet projected demand in each scenario. Higher demand in the Current Policies Scenario means a higher call on oil from costly fields in non-OPEC countries. Conversely, in the 450 Scenario, more aggressive policy action to curb demand means that market equilibrium can be found at a lower price. The non-OPEC supply cost curves for 2015 and 2040, derived from the WEM, help to illustrate the underlying logic behind the various long-term trajectories (Figure 1.4). As might be expected, a higher oil price allows an increased volume of resources to be developed, including larger volumes of unconventional oil. But the picture also changes over time: the 2040 cost curves, illustrated here for different non-OPEC resource categories in the New Policies Scenario, are higher and steeper than those for 2015, as capital and operating costs are pushed higher by the gradual depletion of the resource base and the need to develop more challenging or remote fields.\(^\text{11}\) The relationship between the supply cost curves and oil prices is not straightforward, but the inference is that a price in the range of $80-120/barrel is likely to be required to enable supply to meet demand in

\(^{11}\) The situation is complicated by the two-way interaction between costs and prices: an increasing oil price pushes up industry activity levels, tightening markets for upstream supplies and services (and meaning that higher prices also tend to lead to higher costs). Likewise, as shown in 2014-2015, an oil price fall is accompanied by strong pressure on supply and service providers to reduce costs. This correlation between oil prices and industry costs is captured in the way that costs are modelled in the World Energy Model.