The retirement function can be expressed in a cumulative way, i.e. by adding up the successive retirement probabilities over the service life of the cohort. The result is best explained by looking at Table.

The first column in Table shows investment expenditure over the past 16 years, at historical prices.

The table is best read starting with the third column that replicates the age-efficiency function in the case of a single asset with service life of eight years – the same pattern that was summarised in Table.

It has been derived from the combined age-efficiency/retirement profile in precisely the same way an age-price profile for a single asset has been derived from an age-efficiency profile for a single asset (Tables 3.1 to Table).

Depreciation rates are shown in the third column of Table and are simply a different way of expressing the age-price profile for the entire cohort that was derived in Table 5.1: for every age, the depreciation rate shows the difference in value between successive ages as a percentage of the younger asset.

The latter reflect the value loss of an asset as it ages, expressed as a percentage of the value of a new asset, as shown in Table.
Page 48:
Table number is Table 5.3 in the following sentences:

This is simulated in the first six columns of Table: the year for which depreciation is to be computed is year 17 and the second column lists investment expenditure of a particular asset type during the years 1 to 17.

There is a second, equivalent way to compute depreciation and it uses directly the depreciation profile shown in Table. More specifically, the depreciation profile is applied directly to the series of past investment. This computation can be seen in the 7th and 8th column of Table.

Page 56:
Table number is Table 6.1 in the following sentences:

With the age-price/retirement profile in hand, the perpetual inventory method can be applied to yield a measure of the net stock, as shown in Table.

The net capital stock at prices of year 16 in Table was calculated using the year average prices of the asset if the investment deflator in column three relates to mid-periods.

Thus, to use the net capital stock at current prices shown in Table as a balance sheet entry, it must be multiplied by the ratio of end-year to year average prices.

Page 119:
Table number is Table 13.3 in the following sentence:

By way of a numerical example, the procedure is shown in Table.

Page 144:
Table number is Table 16.1 in the following sentence:

In Table, we take a look at how the SRTP turns out empirically for OECD countries.

Page 188:
The expression should be read as follows:

$$d^0K^t \neq D^t$$ (60)

Page 189:
The following paragraph should not have a number.

6. The anticipated general inflation rate for period t along with the nominal interest rate can be used to define the period t anticipated real interest rate $r(tB)^*$ and the period t anticipated real asset inflation rate or real rate of holding gains/losses $i(tB)^*$ as follows: