Foreword

This report has been primarily prepared by Martin von Lampe, Agricultural Policy Analyst in the OECD Trade and Agriculture Directorate, but it also contains material provided by other colleagues within and outside this Organisation. This in particular include sections on policy developments (Garry Smith), on science and innovation (Alexandre Bartsev and Iain Gillespie, OECD Directorate for Science, Technology and Innovation), on performance with respect to environmental and other criteria (Paolo Frankl, International Energy Agency, in co-operation with the United Nations Environment Programme and the European Environment Agency), and on environmental effects of agricultural land allocation (Jussi Lankoski). Claude Nenert provided substantial statistical support. Many other colleagues – within the OECD, IEA and externally – have contributed by providing comments on earlier drafts or by editorial, statistical and secretarial assistance.

This work was undertaken with the financial assistance of the governments of the Netherlands and Sweden.
Notes

1. IEA: World Energy Outlook (WEO) 2006 and 2007. All these numbers are projected to keep growing, although projected growth rates have been revised downwards in the 2007 edition of the WEO. As the 2007 edition does not provide transport-related emissions specifically, these were estimated using the emissions related to oil use from the 2007 WEO and the share of transport related emission in total oil use related emissions provided in the 2006 edition of the WEO.

2. Total biofuel production has a larger effect: Taking into account all biofuels produced (as opposed to those generated by future support) in North America and the EU (as we look at support in these countries only we exclude Brazilian ethanol here) during the 2013-2017 average, the reduction in GHG emissions would range from 0.9% to 1.8% of their total transport related GHG emissions projected for 2015. Not all of these reductions are caused by support over the decade to come, but result partly from support provided in the past. The values in this footnote are given here for transparency reasons but should not be read in terms of efficiency of support.

4. The data provided in the GSI sources include an estimate of the shares of total support vary with biofuel quantities – the projections referred to here extrapolate this part using the projected biofuel quantities as published in OECD (2008a).

5. This extrapolation assumes that current forms of biofuel support remain maintained over the decade to come – as do the market projections presented in OECD (2008a) underlying the present analysis. It should be noted here that with technological advances in both existing and future biofuel chains the required support per unit of output might decline. While lower support would likely reduce biofuel output as well, the per unit support costs of biofuel-related GHG savings and, for that matter, achievement of other policy objectives might be reduced as well.

7. If the total biofuel production in those three regions were considered, the above numbers would suggest costs for taxpayers and consumers of between USD 430 and 840 per ton of CO2-equivalent avoided. These values are given here for transparency reasons but should not be read in terms of efficiency of support.

8. This depends on the fate of the abandoned land and may therefore not be true in all cases.

10. Again, total biofuel use in these regions obviously has a larger fuel replacement effect, equivalent to about 1.5% to 2% of medium-term diesel use and 1% to 2.4% of gasoline use in the countries considered.
11. Taking total biofuel use into account, these replacement costs would be lower at USD 0.90 to 2.30 per litre of gasoline equivalent and USD 0.75 to 1.00 per litre of diesel equivalent on average. These values are given here for transparency reasons but should not be read in terms of efficiency of support. Due to the various cross-country effects the different support measures have, a calculation of replacement costs for individual countries is not possible in a meaningful way based on this analysis.

12. USD 0.40 per litre of gasoline and USD 0.60 per litre of diesel if the total biofuel use is considered. These values are given here for transparency reasons but should not be read in terms of efficiency of support.

13. See, for example, OECD (2002).

15. See the discussion on biofuel technologies and equipments in Chapter 3 of this report.

References

References to the section on Biofuel Performance with Respect to Environmental and Other Criteria

Baitz, M. et al. (2004), Comparative life cycle assessment for SunDiesel (Choren Process) and conventional diesel fuel, Executive Summary, September.

Beer, T. et al. (2007), The greenhouse and air quality emissions of biodiesel blends in Australia, CSIRO.

Chalmers (2008), GBEP TF GHG meeting, Washington 6-7 March 2008. GBEP 2nd TF Meeting on GHG Methodologies, www.globalbioenergy.org/1440.html, retrieved 10.03.08

Choudhury, R. et al. (2002), GM well to wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems, as European study, Ottobrunn, September.

Da Costa, R.E. and Silva Lora, E.E. (year not available), The energy balance in the production of palm oil biodiesel – two case studies: Brazil and Colombia.

De la Rua et al. (2007), Life cycle environmental benefits of biodiesel production and use in Spain, 14th European Biomass Conference, Paris, France.

Delucchi, M.A. (2006), Lifecycle analysis of biofuels, draft manuscript, ITS University of California, May.

Ecobilan (2002), Bilans énergétiques et gaz à effet de serre des filières de production de biocarburants, technical report, final version, November.

Ecobilan (2006), Bilan énergétique et émissions de GES des carburants et biocarburants conventionnels – Convergences et divergences entre les principales études reconnues (citées), Paris.

Elsayed, M. A. et al. (2003), Carbon and energy balances for a range of biofuel options, Sheffield Hallam University.

Fehrenbach (2008), GBEP TF GHG meeting, Washington 6-7 March 2008. GBEP 2nd TF Meeting on GHG Methodologies, www.globalbioenergy.org/1440.html, retrieved 10.03.08

REFERENCES

IEA Bioenergy (2007), Potential contribution of bioenergy to the world’s future energy demand.

Junglbuth, N. et al. (2007), Life cycle assessment of BTL-fuel production. Deliverable 5.2.2 and 5.2.10 of the EU integrated project Renew, July 2007.

Kägi, T. et al. (2007), Ökobilanz von Energieprodukten: Bewertung der landwirtschaftlichen Biomasse-Produktion, ART.

Larson, E. D. (2005), A review of LCA studies on liquid biofuels systems for the transport sector.

Lechón, Y. et al. (2005), Análisis del ciclo de vida de combustibles alternativos para el transporte. Fase I. Análisis de ciclo de vida comparativo del etanol de cereales y de la gasolina. Energía y cambio climático, Ciemat.

Lechón, Y. et al. (2006), Análisis del ciclo de vida de combustibles alternativos para el transporte. Fase II. Análisis de ciclo de vida comparativo de biodiesel y diesel. Energía y cambio climático, Ciemat.

Macedo (2008) GBEP 2nd TF Meeting on GHG Methodologies, www.globalbioenergy.org/1440.html, retrieved 10.03.08

Macedo, I. et al. (2004), Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil, São Paulo, April.

S&T Consultants (2003), The addition of ethanol from wheat to GHGenius, Delta BC, January.

S&T Consultants (2006), Sensitivity analysis of GHG emissions from biofuels in Canada, Delta BC, August.

SenterNovem (2005), Participative LCA on biofuels, rapport 2 GAVE-05.08

Sheehan et al. (1998), Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus, NREL.

Smeets, E. et al. (2006), Sustainability of Brazilian bio-ethanol, University of Utrecht, Copernicus Institute, and State University of Campinas, August.

Other references

F.O.Licht’s (2007), Data kindly directly provided by F.O.Licht’s to the OECD Secretariat, 2007.

F.O.Licht’s (various issues), World Ethanol & Biofuels Report.

LMC (2007a), LMC Biodiesel Data, data provided by LMC International Ltd., 2007.

LMC (2007b), LMC Ethanol Data, data provided by LMC International Ltd., 2007.

